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Contribution from the Dept. of Chemistry,

York University, North York (Toronto),

Ontario, Canada, M3J 1P3.

Correlations Between the Ligand Electrochemical Parameter. ET (D and the Hammett Substituent

Param~eter. a.

By Hitoshi Masui and A. B. P. Lever.

Correlations of the electrochemical parameter, EL(L) with Hammett and Taft
,

parameters, ap, am, a+ and a are presented and discussed. The correlations provide

a means to extend the electrochemical parameter and the Hammett and Taft

databases.

Recently, a ligand electrochemical parameter, EL(L), based upon the Ru II/Ru reduction

potential as an electrochemical standard, was introduced1-3 and developed.4"14 This parameter allows

one to predict the metal-centred redox potential of a variety of complexes based on the additivity of the

EL(L) parameters. The prediction is made using the linear relationship,

E(obs) = SM EL(Li) + 'M (1)

where the slope, SM, and the intercept, IM' are constant for all derivatives of a given metal undergoing a

defined redox process; i.e. having a defined initial and final oxidation state, coordination number,

stereochemistry, and spin state.

Hammett a parameters have been shown to correlate with, inter alia, metal centered

electrochemical potentials in a variety of substituted ligand complexes. 15-31 It follows that, in these

cases, Hammett parameters must also linearly correlate with EL(L) values, as briefly noted for substituted

benzoquinonediimine species.3 '3 2
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In this exploratory paper we consider possible relationships between Hammett or Taft parameters

with EL(L) parameters. The question of whether it is better to use Op, a m, + or a is discussed briefly.

From a pragmatic point of view, correlation with ap or om is preferred since there is a large database of

these parameters for a wide variety of substituents. For example, am and ap values for some 530

substituents are listed in Table I of ref. 33. However, when the substituent is closer to the metal 3id

metal-substituent x interactions are possible, a or a+ may be more appropriate.

It should be possible to use Hammett or Taft parameters to derive EL(L) values for a large variety

of ligands not covered in ref. 1, thereby, greatly expanding the utility of the electrochemical parameter

analysis. In particular the availability of Hammett parameters for a great number of organic functional

groups should permit these EL(L) parameters to be used to derive redox potentials in a variety of

organometallic species. Their availability should spur the synthesis of more exotic complexes by defining

a potential range for their isolation. Further, electrochemically generated EL(L) values may then be used

to obtain a values for hitherto unreported substituents. This paper begins the exploration of such a

correlation but is restricted to a single- rather than multi-parameter correlation.

The relationship between the EL(L) parameter and the a parameter can be deduced from the

mathematical definition of the EL(L) parameter (Eqn. 4b of R-f. I), the Nernst equation34 and the

equations expressing the Hammett free-energy relationship. 3 1,3 5 ,36 Thus, the EL(L) parameter of a

substituted ligand, LX, (LH denotes a parent ligand substituted by X which may also generally represent a

collection of substituents as in the case of poly-substituted ligands) is given by:3 7

EL(LX) = 2.303(RT/nF)P(L)RuII9IZa + EL(LH) (2)

Here, P(L)RuII' the reaction parameter, characterizes the sensitivity of the RuIM redox potential to

substitution at L for the series, and Eo is the sum of the Hammett or Taft parameters of the substituent(s)

attached to L, and EL(LH) is the EL(L) parameter of the unsubstituted ligand. The remaining constants

retain their usual meanings. 1,33-36. The reaction parameter is the fitted parameter.

Based on previous literature,15-31 a correlation can be expected between Zo and EL(L) for

homologous series such as substituted pyridines R-Py, substituted bipyridines,

4-R,4'-R',5-R",5'-R" 'bpy, R, R',R"-phosphines, diketones (RCOCHR'COR"), and

~Avelablit 8DCO"

Disat Speciax- '-:IiI~r|S IJ

IA .1
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benzoquinonediimines, R-BQDI, for which a significant EL(L) database 1' 3 2 is available. In the pyridine

?.nd bipyridine series, it is reasonable to use the a and am parameters for subsrituents on the aromatic

rings which are para or meta to the coordinating atoms; regression data are shown in Table 1. In the case

of the phosphines and diketones, where the substituent is closer to the reaction centre, parameters such as

a+, a or R, 33 '39.4 which incorporate a resonance or ic interaction may be more appropriate given the

importance of these interactions in determining the ligand's EL(L) value.1 In the case of the phosphines

(including phosphites) there are too few available a+ parameter values to be very useful. A good

correlation was observed with a (Table 1) and fairly good correlations were also observed for ap and am

although they were statistically less well behaved than a . Correlation with R was very poor. One may

question whether a values are truly additive when dealing with several substituents on the same atom

(phosphorus) and a more detailed analysis of such an assumption is left for future analysis. An excellent

correlation is observed for the diketone species with 0+, much better than with a . Good correlations are

also observed with both ap and am, but the application of a+ is more appropriate in this case (Table 1).

While good linear correlations were obtained for all the homologous series studied (Table 1), one

should note the narrow range of EL parameters for each series (except perhaps the bipyridines) so that a

good correlation while useful, is not so surprising or dramatic.

The P(L)RulI/u parameters do not vary greatly between these series and are largest for
32,41substituted benzoquinonediimines and phosphines, where electronic coupling to the metal centre is

known to be very strong. Surprisingly, the reaction parameter for the pyridine series is twice that for the

bipyridine series showing that substituent effects are transmitted much more readily to ruthenium in the

pyridine series than in the bipyridine series. This may be due to a steric effect.

Of more profound value, a correlation with a was also noted between a large number of neutral

and anionic ligands which may be regarded as substituents of a hydrido M(L')nH species. Thus

if the substituent is attached directly to the metal,

EL(X-) = 2.303(RT/nF)PRuUlIZI + EL(H') (3)

For example (Table 2), NH 3 and CI" ligands may replace the hydrido ligand on ruthenium just as
NH3+ and CI would replace the hydrogen of an organic molecule. Such analogies have been drawn
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previously between organic and inorganic fragments. 38

The validity of Eqn. 3 may be tested by plotting the EL(L) data listed in Table 2 against a p as in

Figure 1. Indeed, quite a good linear correlation is observed between the two parameters with the

y-intercept gratifyingly close to the EL(HW) value of the hydride ligand. As expected, the sensitivity of the

Ru 1IL 1/ redox potential to direct substitution, as indicated by 9RuIImIP is much greater than that of the

ligand substitutions in the homologous series identified above. Given the closeness of the interaction, the

Cp parameter is not necessarily the most appropriate parameter to use but pragmatically it works while
* o+

parameters such as R33 do not, and o and a cannot be adequately tested.

This direct correlation provides an exciting opportunity for greatly expanding the EL(L) database.

Thus, the correlations shown in Tables I and 2 may now be used not only to derive EL(L) for many

substituted ligands but also for a variety of exotic ligands chosen, for example, from Table I of ref. 33; ie.

ligands which may be more common in organometallic chemistry. Some of these predicted EL(L) values

are presented in Table 3.

It remains to be seen if ligands such as NH2 ", which are likely to be strongly n-bonded to

ruthenium, can be treated in such as simple fashion. One may also question in the future whether multiple

substituents in the same ligand can be linearly treated with Eqn.(2); this does appear to be possible to the

extent that it has been tested in the species discussed here. Future work will also address how the reaction

parameters change with other metal ions, to see how substituent effects are transmitted to couples other

than RuI/I, and whether multi-parameter fits42 may offer advantages. One may also expect that careful

analysis of Hammett or Taft parameters giving good correlations with EL(L), compared with those that do

not, will provide additional information about the factors determining such relationships.

Acknowledgements We are indebted to the Natural Sciences and Engineering Research Council

(Ottawa), and the Office of Naval Research (Washington) for financial support. We also acknowledge

useful discussion with Carlos da Cunha.
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Table 1. Correlation parameters for EL(L) vs .o plots.a

Ligand SM EL(LH) Pb Rc sample size

benzoquinonediimines - ap 0.17 0.26 2.9 0.98 6

phosphines - a, 0.17 0.35 2.9 0.95 10

pyridines - Idd 0.13 0.24 2.2 0.95 17

bipyridines - ,T 0.07 0.25 1.2 0.99 16

diketones - o+ 0.12 0.01 2.0 0.98 13

direct - Ope 0.62 -0.37 10.5 0.95 20

a) Solutions to eqn. (3). See text for detail concerning parameter used. Values of am and ap, of a and of

o+ were taken from Tables 1, 11 and V, of ref.33 respectively. Actual data are listed in the Appendix. b)

Reaction parameter for Rum/IlL. c) The regression coefficient. d) lo = om + ap as appropriate for the

species concerned. e) Solution to Eqn. 3; also see Tables 2 and 3.
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Table 2. Species which act as ligands and substituents.

Species (X) ap(X)a EL(X')b

OH -0.37 -0.59

SPh 0.07 -0.53

F 0.06 -0.42

N3 0.08 -0.3

H 0 -0.3

NCO 0.19 -0.25

I 0.18 -0.24

Cl 0.23 -0.24

Br 0.23 -0.22

OCOCF 3  0.46 -0.15

NO3  0.7 -0.11

NCS 0.52 -0.06

NO2  0.78 0.02

CN 0.66 0.02

NH3 + 0.6 0.07

S(Me)2+ 0.9 0.31

P(Me) 3 + 0.73 0.33

P(Et)3+ 0.98 0.34

PMePh2 + 1.18 0.37

N2 + 1.91 0.68

a) Values obtained from ref. 33. b) Values obtained from ref.1
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Table 3. Predicted EL(L) Values

Species (X) P(X)a EL(X)b

NH-2  -0.66 -0.78

NHPh -0.56 -0.71

NMe3 + 0.82 0.13

HS 0.15 -0.28

Me -0.17 -0.47

CF3  0.54 -0.04

Acetate -0.16 -0.47

SiMe3  -0.07 -0.41

CMe 3  -0.2 -0.49

Ph -0.01 -0.38

C6 F5  0.27 -0.20

Si(NMe2 )3  -0.04 -0.39

a) Values obtained from ref.3 3 . b) Values obtained using Eqn. 3 (see Table 1, bottom entry).
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Figure

Figure 1. A plot of the EL(L) parameter versus the Hammett ap parameter for substituents capable of acting

directly as ligands (Data in Table 2)
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Appendix; Data used to determine the regression statistics in Table 1.

Benzoquinonediimines, EL(L), Ela = lap (Electrochemical data, and hence EL(L) values from ref.4 1);

4-NO 2 BQDI, 0.38,0.78; 4,5-CL2 BQDI, 0.33, 0.46; BQDI, 0.28, 0; 4,5-(CH 3 )BQDI, 0.25, -0.34;

4,5-(OME)BQDI, 0.16, -0.54; 4,5-(NH2 )BQDI, 0.01, -1.32.

Phosphines, EL(L), Taft a* (EL(L) values from ref. ); Me 3 P, 0.33, -0.15; Me 2I-HP, 0.34, -0.1; Me2 PhP.

0.34, 0; Pr3 P, 0.34, -0.15; Et3 P, 0.34, -0.15; MePh2 P, 0.37, 0.15; Tolyl3 P, 0.37, 0.15; Ph3 P, 0.39,

0.3; (PhO)3 P, 0.58, 1.14; (MeO)3 P, 0.42,0.69.

Pyridines, EL(L), la = am + Op (EL (L) values from ref.1); 4-ViPy, 0.2, -0.04; 3,5-Me 2 PY, 0.21, -0.14;

4-PhPy, 0.23, -0.01; 4-MePy, 0.23, -0.17; 4-StPy, 0.23, -0.07; 4-t-BuPy, 0.23, -0.2; Py, 0.25, 0;

3-CONH 2 Py, 0.26,0.28; 4-CiPy, 0.26,0.23; 4-CONH 2 Py, 0.28,0.36; 3-IPy, 0.29,0.35;

4-COOHPy, 0.29,0.45; 4-AcPy, 0.3,0.5; 4-(CHO)Py, 0.31,0.42; 4-CNPy, 0.32,0.66; 4-CF 3 PY,

0.32, 0.54; 3,5-Cl2PY, 0.33, 0.74.

Bipyridines, EL(L), Za = arm + ap (Electrochemical data, and hence EL(L) values from refs.1,43,44

4,4'-(NEt2)2bpy, 0.15, -1.44; 4,4'-(Me) 2 bpy, 0.23, -0.34; 4,4'-(CH=CQPh)2 bpy, 0.24, -0.14;

5,5'-(Me) 2 bpy, 0.24, -0.14; 4,4'-(Ph) 2 bpy, 0.25, -0.02; bpy, 0.26, 0; 4-Clbpy, 0.27, 0.23; 4-Brbpy,

0.27,0.23; 4,4-Cl2 bpy, 0.29, 0.46; 4,4-Br 2 bpy, 0.29, 0.46; 4,4-(CO2 Et)2bpy, 0.31, 0.9;

4-Me,4'vinyl-bpy, 0.23, -0.21; 4-nitrobpy, 0.30,0.78; 4,4-(CO2 Ph)2 bpy, 0.31, 0.88;

5,5-(CO 2 Et)2 bpy, 0.32, 0.88; 4,5,4,5-Me 4 bpy, 0.22, -0.48.

Electrochemical data for the species 4,4'-(OEt)2 bpy, 4,4'-(NHCOMe) 2 bpy, 4,4'-(OPh) 2 bpy, and

5,5'-(NHCOMe) 2 bpy, from ref.4 3 are excluded since they fit the correlation poorly; either the

electrochemical or the Hanmmett data is suspect.
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Diketones, EL, r+ (Electrochemical data, and hence EL(L) values from refs. 1,2 1,22); (listed as

derivatives of RCOCR'COR") CF 3 ,H,Ph, 0.05, 0.43; CF 3 ,H,CH3, 0.03, 0.30; CF 3,H,CF3, 0.17,

1.22; PhH,Ph, -0.04, -0.36; Ph,H,Me, -0.06, -0.49; Me,H,Me, -0.08, -0.62; Me,Br,Me, -0.03,

-0.47; Me,CI,Me, -0.03, -0.51; Me,I,Me, -0.03, -0.48; Me,Me,Me, -0.11, -0.93; Me,Ph,Me, -0.09,

-0.80; CF 3 ,H,3-thienyl, 0.05, 0.23; CF3 ,H,tBu, 0.02, 0.35.
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